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Abslraet By means of a new family of Ward identities, we obtain expressions for 
two-particle Green functions for electrons in random alloys with offdiagonal disorder, 
including the case of short-range order. The Ward identities are exprmed in a fomalism 
in which the configuration averages are only partially carried out, and the disorder field 
is represented by conditional probabilities of all orden. In the test case of a cubic, 
tight-binding nearest-neighbour binaly alloy, and by numerical diiimenliation of the one. 
particle cPA4pe  Green function, we find that the approximation in which the v e n a  
comections are neglected is considerably in error. 

1. Introduction 

As is well known, there are many interesting properties of a solid which cannot 
be calculated solely from the knowledge of its one-particle Green function. This is 
the case, for instance, for the DC electrical conductivity of an alloy (Langer 1960), 
even if one neglects the effects of other complications such as those arising from the 
randomness of the current operator (Niizeki 1977, Mookejee et al 1985). 

Proceeding from the Kubo formula, it is seen that the electrical conductivity is 
given hy a number of term, some of which can be calculated from the oneparticle 
Green function by means of Ward-Velickj identities (Ward 1950, Velickj 1969). The 
remnant terms cannot be obtained in this way, and one has to resort to the methods 
of perturbation theory-by setting up and approximately solving, for instance, an 
equation of the BetheSalpeter type (Langer 1961, Glasser 1963). Unfortunately it 
tums out, at least in the case of the impurity resistance in metals, that the former 
class of terms do not contribute in leading order. Thus, the terms that are easy to 
calculate turn out to be practically irrelevant in this case (Langer 1960). 

Another interesting problem whose solution requires at least the knowledge of the 
average two-particle Green function is that of the localization of electronic states in 
solids as a function of dimensionality and degree of disorder. For instance, Chitanvis 
and Leath (1982, 1983) investigated the conjecture that two is the critical dimension 
for localization produced even by weak disorder. For this purpose, these authors 
calculated the vertex function using the coherent potential approximation, a B e t h e  
Saltpeter equation summing all the maximally crossed diagram, and a generalization 
of the travelling-cluster approximation. Furthermore, they used the satisfaction of the 
Ward-Velickj identities as a test of validity in these approximate schemes . 
0953-898441~97709+13$03.50 @J 1991 IOP Publishing Ltd 7709 
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These useful Ward-Velicw identities can be simply proven. As is well known, the 
one-particle Green function G(C) is given by 

where C is a complex energy parameter and H is the Hamiltonian of the system. 
Thus, if (. . .) denotes the configuration average, one readily finds that 

(G(‘f?)) --(G(Cz)) = -(&I - ‘ % ) ( ~ ( C d ~ ( ~ z z ) )  (2) 

and in particular, 

In this paper we introduce another class of Ward identities in which the many-particle 
Green functions are calculated in terms of derivatives with respect to the perturbation 
instead of the complex energy. Thus, this approach is similar to that of Baym (Baym 
and Kadanoff 1961, Baym 1962). Another difference with the usual procedure is that 
these new identities are expressible only in terms of partially averaged quantities with 
the full configuration average to be performed at the end of the calculation. In the 
rest of this paper we employ these identities in two different ways. First, we derive a 
number of formulae of the Bethesalpeter type for the two-particle Green function 
of an electron in a random alloy with off-diagonal disorder, including the case of 
short-range order. In principle these forms are, of course, equivalent. But they need 
not be equally useful in a given perturbative computation and thus it is convenient to 
have a method which systematically generates all of them. On the other hand, in a 
calculation of a model tight-binding binaly alloy, we use the= Ward identities directly 
as a means of generating the two-particle Green function by numerical differentiation 
of the one-particle Green function One can then compare these exact values with 
those obtained in the (frequently made) approximation in which the vertex corrections 
are neglected 

2. The one-particle Green function 

In this paper we use a simple model, closely related to the tight-binding approximation 
as applied to the description of a random substitutional alloy with chemical species A, 
B, C, . . . , etc. This model has the advantage of being completely tractable, of having 
been widely used in a number of theoretical discussions, and of not being wholely 
unrealistic. The model consists of a crystal in which the electrons can be described 
by a single Wannier orbital associated with each site. The diagonal part E,, equals 
E,, EB, Ec, . . ., etc, while the off-diagonal part consists of matrix elements W,,,, 
having values W!;;, U’!;: = WBvA ,,m, . . . , etc, depending on the distance between 
the sites with indices n and m, and on the nature of the atomic species occupying 
each position. We do not assume that this interaction is of the nearest-neighbour 
type. Explicitly, the Hamiltonian is 
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If we denote by gn,,,(Z) = gn(E)6,,, the Green function for a localized state with 
no hopping, depending on the energy C and on the type of atom situated at n, we 
have for the Green function G,,,(&) for a given alloy 

Gn,m = gn6n.m + g n W n , m g m  + CgnWn,iglWi,mgm 
1 

i,i' 

Of course in practice one does not know which atomic species occupies each site, but 
only certain statistical properties of the alloy, such as the concentratiom cp  of the 
species (a = A, B . . .), the range of the order etc. Correspondingly, we calculate 
quantities which are averages computed over assemblies of such alloys, characterized 
by a suitable number of statistical parameters. 

For convenience, we perform this average in two stages. If we first represent any 
given alloy by a function s which assigns to each site n an atom of species s( n), and 
denote by PIS] the probability with which the alloy appears in the assembly, we can 
define the average Green function G;$, = (Gn,m),,B by 

where P,;;, P z ; z ,  . . . , etc are the condifionalprobabilities 

and so on. Here the symbol 68(n),A is equal to one if the site n is occupied by an 
atom of species A, and is zero otherwise. Also 

4 - 6 
' a r b  = m,$6apb' 

We note that the statistical parameters which characterize the assembly in this schema 
are these conditional probabilities and the concentrations 
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Most of the calculations in the present theory are performed on these partialb av- 
eraged quantities. It seems also that the interesting results can only be expressed in 
terms of variables of this type. This is certainly the case of the Ward-type identities 
which connect one- to two-partide Green functions. This situation is reminiscent 
of what happens in the so-called augmented-space formalism (Mookerjee 1973a,b, 
1975, Kaplan and Gray 1976, 1977, 1978, Diehl and Leath 1979a,b, Diehl, Leath and 
Kaplan 1979, Kaplan el al 1980, Chitanvis and Leath 1983) except that the variables 
describing the chemical species at each site, and thus the disorder field, appear here 
in a natural manner. We note that Gray and Kaplan included the case of short-range 
order in the augmented-space formalism and described the disorder field precisely in 
this way. 

However, these quantities have to be fully averaged before they are compared 
with experiment- We have, for instance that thefulfy averaged Green function is 
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as is easily checked. 
The form of the propagator (7) is particularly convenient for perturbation theory. 

We can represent the terms appearing in this expansion by essentially the same 
diagrams as those employed by b a t h  (1970). If we denote by U the sum of all 
irreducible diagrams, we find that the Green function (7) satisfies the pseudo-Dyson 
equation 

In order to proceed further, one has to specify the form of the conditional probabili- 
ties appearing in (7). The simples! schema consists in assuming a uniform distribution 
of the atom composing the alloy. This problem has been solved by Leath (1968,1970) 
in a particularly elegant form. (We note however that Leath did not treat, as we do 
here, the case of off-diagonal disorder.) In the framework of the present paper, 
Leath's procedure can be described as follows: one defines first the dressed interac- 
tion 

with 

Of particular importance in this treatment is the dressed interaction of each site 
with itself. This quantity (which obviously does not depend on the particular site 
envisaged) will be denoted by llJ2'B. Leath has shown that, within the limits of the 
coherent-potential approximation (CPA), the seU-resolvent U is a functional of Jv, 
diagonal in the site representation. Thus, all quantities are matrices in the space of 
the chemical species (2 x 2 matrices for a binary alloy, 3 x 3 for a ternary alloy etc.). 



Ward identities and random alloys with SRO 7713 

It is particularly convenient to employ matrix notation in this space. Thus, Leath's 
result can be written 

U(W) = [1+ uo(x)x]-~uo(x)  (14) 

where 

and 

X(W) = [1+ wou(w)]-lwo. (16) 

An interesting generalization of this theory, also capable of describing the effects 
of short-range order, was developed by Rbsler and Lazo (1981). By means of a 
generalized superpasition approximation, which however gives a correct a m u n t  of 
the effects of self-correlation, they were able to write all conditional probabilities as 
certain functions of the atomic concentrations and the spatial correlations, or Cowley 
parameters (Cowley 1950). 

We shall proceed here by a different method to that used by Rossler and Lazo. We 
note that the perturbative series (7) can be summed in this case by a straightforward 
extension of Leath's formalism. First of all (in the notation of the present paper), 
the pseudo-Dyson equation (11) is written as 

where the weighted interaction U is defined by 

4 = U,,* - w.,*p::! 
(no sum over repeated indices is implied) and where p : f  is the conditional probabil- 
ity that, given that an atom of species Q occupies the site a, another atom of species 
p occupies (a different) site b. In the case of a binary alloy with concentrations cA 
and cB and Cowley parameter y,,,, for instance, one has that 
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instead of (13). We lind here also that (in a straightfomrd generalization of CPA), 
U is diagonal in the site indices and a functional of WO and Do given by 
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u(W,  0 )  = [ 1 +  uo(X)Y]-’uo(Y) (23) 

with 

X ( W , t r ) = [ l - Y u ( W , D ) ] W , ,  
Y ( W ,  0 )  = Do[l + u(W, tr)Do]-’ 

and where U,, is still given by (15). 

3. The two-particle Green function 

It is well known that, if one wants to calculate particle densities or particle curreniz 
for instance, it is not enough to know the one-particle propagator (5). Rather, one 
requires the two-particle Green function 

p 1 8 w  = 
a,b,m,n - (GqbGm,n)cr,8,fi8v 

6”’ p*AP P ~ Z  + g a W , t g O g p  m,n o,b,m - gagaSa,b ‘m,n 
- 

+ g e C $ g p W m : n g u  P p0,PP a,m,n 

+ ~ s O w ~ c ~ g y ~ ~ ~ t ~ p g P ~ ~ ~ ~ p ~ : ~ ~ ~ ~ ~  

+ 90 w$ g p g ,  Y2; 9“ pa A m ,  n 

‘1-C 

- ,B,P,u 

by the same arguments used to obtain (7). 
It is possible to sum this perturbative series using the usual methods of diagram- 

matic analysis. But, as noted by L a t h  (1970), it is simpler to proceed as follows. We 
begin with the remarkable identity 

This equation, although expected on general grounds (Baym 1%2), can be established 
in the present case by direct term-by-term differentiation of equation (7). Unfortu- 
nately (as is also easily checked out), this procedure does not generalize to the 
calculation of the ?a-particle Green function for n > 2. 

We note, further, a number of theoretical relationships which are consequences 
of (27)-we analyse only the case in which short-range order is possible, (Rossler and 
Lazo 1981), as the complete random alloy (Leath 1968, 1970) can be deduced from 
it as a special case. By differentiating the two sides of (17), one has that 

G ~ T ~ + ! ~  a,b,n,m ( E )  = G;$(E)&;G~;~(E)  + V T , ~ ~ ~ ( ( E ) S : : ~ ~ : : , ‘ ( C ) V ~ ~ ~ ” ( E )  
Y,7’,C,C’ 

(28) 



Ward identities and random alloys with SRO 7715 

As a consequence of (U) and (30), we tind that S is a function of the renomalied 
interactions W and 8 (defined in (20) and (21)) and their derivatives with respect 
to the bare interaction Wz E E@’/aW and DZ E 88/i3W. Thus 

S(W, w,, 8, U,) = U( w , O)U,U( w , 0)  

+ [l - a ( W ,  8)Y]-~s0(X,Xz)[l - YU(W, U ) ] 4  (31) 

(32) ~,,~:~,m”+(l%’, 0 @,P w,) = 6z;lgL(l - ga@’:t*)-zWz :;e&;: 
w, =[1-Yu(w,8)]-’{xz+[y,u(~,8)+Ys(w,wz,U,Uz)]w} (33) 

U,= [l -Yu(w,8)]-’{Yz+[Yzu(w,8)+Ys(w,wz,8,Uz)]~} (34) 

x = (1 - YU(W, Q]W, - [Yzu(W, 0) + YS(W, w2, 0,  DZ)]W (35) 

Y = [l-Yu(~,8)]~z-[Y~u(W,D)+Ys(w,w~,D,~z)]8. (36) 

and 

Again, this highly non-linear set of equations determine the function S and thus, 
the two-particle Green function GZ,’(<Z, by (28). Needless to say, all quantities 
appearing in equations (30)-(35) should be evaluated at the same energy E.  

There is an alternative formulation. By differentiating again both sides of (17) 
with respect to W ,  or by rearranging equation (Z), one finds that 

where 

Proceeding from equation (31), one can find an explicit formula for the vertex cor- 
rection K. In a third formulation, we can take as our starting point the pseudo 
Bethesalpeter equation 

Gz,(n,m(‘) 7 , P P  = G::f(‘)pb,m @,P GP’Y m,n(‘) 

+ c G& 17 ( & 1 A ~ , ‘ , r , ~ ( & ) G u , @ , ~ , r ( & ) G ~ ~ ( & )  c , a , t , l  s,b,m,t (39) 
7 J , - , ~ , = , l , + t  
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(differing somewhat in structure. with the corresponding expression of Leath (WO), 
equation (54)). Here 
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which is perhaps more closely related to Baym's version of the Ward identities than 
our starting formula (27). 

In practice, one can dispense with solving the complicate set (30)-(36) or their 
analogous equations (37) and (39). One can instead solve the much simpler set (23)- 
(25) and then obtain the two-particle Green function by numerical differentiation 
according to equation (27). 

4. The vertex corrections 

The non-linear set of equations (15) and (23)-(25) was numerically solved for a 
number of values of the hopping matrix elements and the Cowley parameter, in the 
special case of a hypothetical tight-binding cubic binary alloy. (The tight-binding case 
implies, of course, a profound simplification of the calculations as shown by RGssler 
and Lam 1981). By means of an eight-point differentiation formula (Abramowitz and 
Stegun 1965), and according to equation (27), the two-particle Green function was 
directly computed from the corresponding one-particle function 

It is interesting to compare these results with those obtained when the vertex 
corrections are neglected, that is (by equation (28)) 

* , 8 , P l v  - GO$ Bv!J G P ' Y  
G a , b , n , m  - o , b  P b , m  m,n 

a simplification which is often made without apology. We note that, in any case, a 
number of resemblances between the exact and the approximate Green function are 
bound to appear. First, its support i.e. the interval in energy in which the function 
b different from zero, would have to be accurately described by the approximation. 
Furthermore, both the exact and the approximate functions have to reflect the natural 
symmetries of the problem. Lastly, the number-and to some extent, the nature- 
of the van Hove singularities of the exact and the approximate spectra would have 
to appear in close correspondence. Also, these resemblances are more visible in a 
model calculation (such as the present one) than in a more realistic theory, because 
the additional detail which differentiates the exact from the approximate spectra is 
absent here. 

Real and imaginary values of the exact and approximate two-particle Green func- 
tions are compared in figures 1 and 2, respectively, for a typical case (a 5C-50 binary 
alloy with W,, = 0.5 and y = -0.2). Similar results are found for other concentra- 
tions and values of the hopping matrix elemem. It is seen that-exen if the expected 
similarities between the Green functions containing and neglecting the vertex correo 
tions are readily apparent-these two are, in fact, nearly as different as they could be. 
First, the approximation and the exact functions seem to be mirror images of each 
other about the energy axis. Besides (although this may not be immediately clear 
from the figures, because the cutves are not drawn to the same scale), the values of 
the approximate two-particle Green function are smaller in absolute value than the 
exact one by a factor of about 10. 
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Figum 1. Values OE the real part of the Wo-particle Green function (full curve) in a 
50-9 binary alloy wilh the diagonal p m  of W = 0.5 and 7 = -0.2, compared With 
l o x  the approximation which neglects the vertex correction for the same case (dashed 
curve). 

- 4  -2 0 2 4 
8 

Fwre 2. Values of the imaginaly part of the two-particle Green funnion (full curve) in 
a 5C-58 biaaly alloy with the diagonal pan of W = 0.5 and 7 = -0.2. compared wilh 
l o x  the approximation which neglects the vertex correction for the same case (dashed 
curve). 

5. The two-point Green function 

As is well known (Langer 1960. 1961, Glasser 1963), the Green function required for 
a rigorous calculation of the electrical conductivity of the random alloy is 

In the rest of this section we shall generalize the technique found previously in order 
to compute this two-particle, two-energy Green function too by means of a Ward-like 
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identity. In terms of the conditional probabilities of all orders one has, as in (26), 
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Obviously, the calculation of this quantity by means of perturbation-theoretical meth- 
ods does not appear to be easy. One can, alternatively, proceed as follows. Let us first 
introduce generalized hopping matrix elements Wzf(&,&') , which are non-local in 
energy. Next, let us define a new function H,qbB(&,E/) analogous to equation (26) 

g Y r ( &  "' c',b W Y ' . b ( & ) l ) , & ~ ) g a ( E r ) p ~ ; Y . Y ' . 8  , d s b  + . . . . (43) 

At the end of this section we shall discuss how this function can be computed in 
practice. In the meantime, let us note first that if we take 

Wa:f(E,E') = 6 ( E -  &')Wzf (44) 

H,qbs(&,&') = 6(E  - &')G:,'bp(&) 

where Wr;f  is an ordinary matrix element local in the energy variable, we obviously 
have that 

(45) 

where G:;!(E) is the ordinq Green function Further, if we now define a new 
two-particle function H:$;''<(&,&'; , E z )  by 

and calculate it at the particular value given by (44), we find that it reduces to the 
required quantity (42) 

Hn,b.n,m a~8~P3"(&,&';&l,&z) = 6(& -E1)6(&' -Ez)G$$,':(&,E'). (47) 
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function. This was done in a formalism in which the configuration averages are only 
partially carried off, and the disorder field is prescribed by means of conditional 
probabilities of all orders (Rassler and Lam 1981). In this formalism, the one- 
and two-particle Green functions are connected by means of a new class of Ward 
identities, different from the well known Ward-Velicl$ formulae (Ward 1950, Veliclj 
1969). 

In order to illustrate the uses of these identities, we have performed here two 
further calculations: first, we have obtained a number of different equations of the 
Bethe-Salpeter type for the two-particle Green function and have also found pre- 
scriptions for calculating their kernels by combining the Ward identities with existing 
C P A - W  expressions for the one-particle Green function, with or without short-range 
order. On the other hand, we have shown that the problem of solving these mm- 
plicated equations can be obviated by calculating the vertex corrections by direct 
numerical differentiation of the one-particle Green function. 

It may be that the Bethesalpeter equations found here have more interest in 
principle than in practice, because their kernels are found to be defined by com- 
plicated sets of non-linear matrix equations. (These sets, however, appear to be 
soluble in each case by means of numerical methods.) Furthermore, it is probably 
inconsistent to take as a starting point for calculations of two-particle Green func 
tions, one-particle functions obtained from a single-site CPA. Probably, the mrrcct 
procedure would be to use at least a z-cPA-at the risk however, of losing analyticity. 
On the other hand, although these BetheSalpeter-type equations are equivalent in 
principle, they may not be equivalent from the point of view of perturbation theory, 
and thus it is probable that a method capable. of systematically generating all of them 
can be advantageous in practice. 

We note that the results obtained in this paper apply equally to the problem of 
phonons, excitons, magnons or electrons propagating in disordered systems. Also, 
they seem to be readily generalizable to a more realistic model than the Velicw 
(1969) tight-binding case we use here. Furthermore, as even the generalization of the 
I-CPA we use here is such that the vertex corrections involving the velocity operator do 
not vanish identically, the methods of this paper may be useful in throwing new light 
on the problem of the electronic localization in two-dimensional systems (Chitanvis 
and Leath 1982, 1983). 

Of course, the test of usefulness of these procedures lies in their capability to 
accurately calculate interesting properties of disordered materials. We expect to 
publish soon certain new results on the electrical resistivities of random alloys with 
short-range order. 
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